PLOTTING BASIC FIGURES IN MATPLOTLIB WITH EXAMPLE
Line Plot
components in Matplotlib
- A line plot in Matplotlib consists of several components that you can customize to create a visually appealing and informative graph.
- Here are the key components of a line plot in Matplotlib:
1. Figure and Axes:
- Figure (`plt.figure()`): The
top-level container that holds the entire plot. You can customize the figure
size, background color, and other properties.
- Axes (`plt.subplot()` or `plt.subplots()`): The area within the figure where the data is plotted. You can have multiple axes in a single figure.
2. Data Plotting:
- Plotting Function (`plt.plot()`):
This is where you specify the data to be plotted. The most common use is to
connect points with lines, but you can also use markers without lines or choose
other plot types.
plt.plot(x, y, label='sin(x)', color='blue', linestyle='-', linewidth=2, marker='o', markersize=5)
- `x` and `y`: The data to be plotted along the x and y axes.
3. Title and Labels:
- Title (`plt.title()`): Adds a title to
the plot.
plt.title('Line Plot of sin(x)')
- Axis Labels (`plt.xlabel()` and `plt.ylabel()`): Adds labels to the x and y axes.
plt.xlabel('x')
plt.ylabel('sin(x)')
4. Legend:
- Legend (`plt.legend()`): Displays a
legend that describes the elements in the plot. The `label` parameter in the
plotting function is used to associate a label with each data series.
plt.legend()
5. Grid Lines:
- Grid (`plt.grid()`): Adds grid lines
to the plot.
plt.grid(True)
6. Customizing Line Appearance:
- Color (`color`): Specifies the
color of the line.
- Linestyle (`linestyle`): Determines the
style of the line (solid, dashed, dotted, etc.).
- Linewidth (`linewidth`): Sets the width of
the line.
- Marker (`marker`): Specifies the
marker style for data points.
- Markersize (`markersize`): Sets the
size of markers.
These properties are specified in the `plt.plot()` function.
7. Saving and Displaying the Plot:
-
Save (`plt.savefig()`): Saves the plot to a file.
- Show (`plt.show()`): Displays the plot
on the screen.
plt.show()
example:
import
matplotlib.pyplot as plt
import numpy as np
x = np.linspace(0, 2 * np.pi, 100)
y = np.sin(x)
plt.figure(figsize=(8, 4))
plt.plot(x, y,
label='sin(x)', color='blue', linestyle='-', linewidth=2, marker='o',
markersize=5)
plt.title('Line
Plot of sin(x)')
plt.xlabel('x')
plt.ylabel('sin(x)')
plt.grid(True)
plt.legend()
plt.show()
0 Comments